『The Lancet: Diabetes and Endocrinology』12月号に、8月号に掲載された高村らのレター "Radiation and risk of thyroid cancer: Fukushima and Chernobyl" への反論レター "Misrepresented risk of thyroid cancer in Fukushima" が、著者らのリプライと共に掲載された。著作権の関係で、掲載された文章の和訳を公表することはできないが、校正前のレターの和訳の公表は問題ないとエディターから了承を得た。以下は、校正前の原文とその和訳であるが、字数制限下で書かれた原文の意味をわかりやすくするために、和訳では足りない部分を補うか意訳している部分があるので了承願いたい。なお、ランセットではすべての投稿がランセット独自のスタイルに校正されることになっていると説明されたが、あくまでも読者にわかりやすくするための校正であり、実質、内容に変化はなかった。また、このレターの内容は、岩波書店『科学』11月号に寄稿した「チェルノブイリと福島のデータの誤解を招く比較」で、より詳細に説明されている。 *高村らのレター "Radiation and risk of thyroid cancer: Fukushima and Chernobyl" は、2016年9月14日に開催された第24回福島県「県民健康調査」検討委員会で資料8「福島とチェルノブイリにおける甲状腺がんの発症パターンの相違について」として提出されている。 ***** 福島の甲状腺がんリスクが不正確に伝えられている 2011年の核惨事後の福島県での放射線被ばくと甲状腺がんの因果関係は、論争の的となっているトピックである。高村ら(1)は、福島県で見つかっている甲状腺がん症例が「スクリーニング効果」に起因するとし、時期尚早に、そして紛らわしい方法で放射線影響を否定している。
校正前の投稿原文 Misrepresented risk of thyroid cancer in Fukushima Causal relation between radiation exposure and thyroid cancer in Fukushima after the 2011 nuclear disaster is a controversial topic. Takamura et al. [1] prematurely and misleadingly dismiss the radiation effect in attributing thyroid cancer cases detected in Fukushima to “an effect of screening”. Takamura et al. observe from the Belarussian data for ages 0-15 years that starting in 1990, four years after the 1986 Chernobyl accident, the incidence of thyroid cancer had increased in children who were 0-5 years at the time of the accident. The highest number of thyroid cancer surgeries was in younger age groups 4-10 years after Chernobyl. The authors conclude that 113 thyroid cancer cases in Fukushima, detected mostly in older age groups in the first screening cycle from October 2011 to March 2014, are likely due to “an effect of screening.” A more logical conclusion suggests a similar trend in Fukushima in 4-10 years after the accident. It is not valid to compare two different post-accident periods—after (Belarus) and during (Fukushima) the first 3-4 years, or different age ranges (0-15 in Belarus vs. 0-18 in Fukushima).
While Takamura et al. declare that Fukushima’s low thyroid dose levels are “unlikely to have caused a detectable excess in thyroid cancer within 4 years,” Tsuda et al. concluded in their epidemiological analysis of the cancer data that an excess of thyroid cancer was detected within 4 years [2]. Takamura et al. disregard the shortcomings of the thyroid dose measurements [3], including a small sample size (1,080 vs. 360,000 children in the full cohort) and high background radiation levels leading to uncertainties and underestimation. Focus on these doses might overlook potentially higher doses due to individual variation in exposure from behavior patterns and intake of food and water. Critically, the thyroid exposure doses of the cancer cases are unknown and the effect is likely to be linear. More recent evidence points toward increased cancer risks at low doses [4,5], with no apparent dose threshold. Even if a statistically detectable excess were absent at this timepoint for the Fukushima population, it does not mean the absence of cancer risk from the event.
I 喉頭前:甲状軟骨、輪状軟骨前面のリンパ節。 II 気管前:甲状腺下縁から尾側方向に頚部から郭清し得る気管前のリンパ節。 III 気管傍:気管側面のリンパ節で、尾側は頚部から郭清し得る範囲、頭側は反回神経が喉頭に入るところまでとする。 IV 甲状腺周囲:甲状腺の前面および側面の甲状腺に接するリンパ節で、外側は中甲状腺静脈を結紮、切離した場合、甲状腺に付着するものをIVとする。 V 上内深頸:内頸静脈に沿ったリンパ節で、輪状軟骨の下縁より頭側のもの。これをさらに総頸動脈分岐部で上下に二分する。 Va:総頸動脈分岐部より尾側のリンパ節。 Vb:総頸動脈分岐部より頭側のリンパ節。 VI 下内深頸:内頸静脈に沿ったリンパ節で、輪状軟骨の下縁より尾側のもの。鎖骨上窩のリンパ節を含む。 VII 外深頸:胸鎖乳突起後縁と僧帽筋前縁と肩甲舌骨筋でつくる三角のリンパ節 VIII 顎下:顎下三角のリンパ節 IX オトガイ下:オトガイ下三角のリンパ節 X 浅頸:胸骨舌骨筋および胸鎖乳突起の浅葉筋膜より表層のリンパ節 XI 上縦隔:頸部操作では摘出できない上縦隔リンパ節
このスライドでは、様々なグループにおける遺伝子変異プロファイルが示されている。一番右の、青線で囲まれた部分を見ると、福島の52例の甲状腺がんの63.2%がBRAF変異陽性である。スライド右下の緑のボックス内には、長崎大学の光武範吏氏らによる2015年論文 "BRAF V600E mutation is highly prevalent in thyroid carcinomas in the young population in Fukushima: a different oncogenic profile from Chernobyl"(邦題「福島の若年層の甲状腺がんではBRAF V600E変異が高頻度である:チェルノブイリとは異なる発がんプロファイル 」)[11]の情報が記されている。(Nature日本語サイトでのアブストラクト和訳はこちら) この光武論文では、福島の68例の甲状腺がんのうち、43例(63.2%)がBRAF V600E点変異陽性だったと示されている。また光武論文では、68例のうち7例(10.3%)でRET/PTC再配置(RET/PTC1が1例、RET/PTC3が6例)が、4例(5.9%)でETV6/NTRK3再配置が検出されている。(光武論文で遺伝子分析された甲状腺がん症例数は68例である上、TRK fusionは調査されなかったので、スライドの一番右の"Fukushima" 欄で、"n=52" とか、TRK fusionが8.8%と示されている理由は不明である。また、右から2つめの、"our data Ja adults"と記されている欄の日本の成人でのデータの出所も不明である。文献検索では、日本の成人の甲状腺乳頭がんにおけるBRAF変異の頻度は、28.8%[12]、38.2%[13]、38.4%[14]、 53%[15]、そして82.1%[16]と、かなりの幅が見られた。) 2014年日本甲状腺学会の口頭発表で、鈴木眞一氏は、福島で見つかっている甲状腺がんの遺伝子変化は、「通常成人型甲状腺乳頭がん同様の変化であり、今回の症例が福島における原発事故後の小児超音波検診で発見されたものであり、通常であれば成人で発見された可能性のある癌が、検診によって小児あるいは若年の段階で発見された可能性が強い」と述べている。また、光武論文では、遺伝子分析の結果が「おそらく、日本の若年層での散発性および潜在性甲状腺がん(ラテントがん)すべての遺伝子状態を反映している」と述べられている[11]。つまり、スクリーニングなしでは(成人になるまで)発見されなかったであろう散発性がんや潜在がんが、スクリーニングによって診断されているという公式見解が、これらの甲状腺がんの遺伝子プロファイルによって支持されるという主張である。 しかし文献検索では、遺伝子変異と、放射線被ばく、年齢やヨウ素摂取状況との関連性は一律ではない。チェルノブイリ後に頻繁に見られているRET/PTC再配列は、放射線誘発性と散発性の甲状腺がんどちらでも見つかっており[17]、低年齢層とヨウ素欠乏地域でよく見られているとも分析されている[18]。BRAF点変異は、年齢が高くなるにつれて頻繁に見つかるとされてきたが、最近の研究では、小児甲状腺乳頭がんの36.8%(年齢中央値13.7[19]と63%(年齢中央値18.6歳)[20]でBRAF V600E変異が見つかっている。またBRAF点変異は、中国ではヨウ素の高摂取との関連が見つかっているが[21]、最新の論文では、ヨウ素に豊富な国とヨウ素欠乏国との間で甲状腺乳頭がんにおけるBRAF V600E頻度に違いがないことが示されている[16]。 スライド12:チェルノブイリ後のウクライナと原発事故後の福島での甲状腺がん患者の年齢分布
このスライドで示されている棒グラフは、2014年10月に『Thyroid』に掲載された、Tronkoらによるエディターへのレター内の、事故当時年齢0〜18歳の年齢ごとの甲状腺がん症例数の、潜伏期間中と潜伏期間後の2つのグラフを重ね合わせたものである(このレターの非公式全文和訳はこちらで、放射線医学県民健康管理センターの公式日本語概要はこちら)[21]。青色の棒グラフはチェルノブイリ事故後すぐの4年間である1986〜1989年のウクライナ、赤色の棒グラフは福島原発事故後すぐの3年間である2011〜2013年の福島での、どちらも潜伏期間とみなされている期間中の甲状腺がん症例数を示している。一方、オレンジ色の棒グラフは4年間の潜伏期間後の1990〜1993年の4年間の甲状腺がん症例数を示しており、青色と赤色の棒グラフで示されている潜伏期間前と比べると、全体的な増加だけではなく、事故当時0〜5歳での症例数が劇的に増えているのが一目瞭然である。ちなみに、ウクライナで甲状腺がんのスクリーニングか開始されたのは1990年であるが[22]、1986〜1989年の間に発見された甲状腺がんが、無症状で偶然発見されたのか有症状での受診により診断されたのかは定かではない。 レター内では、ウクライナの事故後最初の4年間(青色)と福島の事故後最初の3年間(赤色)の年齢分布が "strikingly similar"(驚くほど似ている)と言及されており、事実、よく似ている。だがレター内では、事故後最初の4年間は、”放射線影響が見られない潜伏期間”としながら、"if thyroid cancers in Fukushima were due to radiation, more cases in exposed preschool-age children would have been expected"「もしも福島での甲状腺がんが放射線によるものであるとすれば、被ばくした4−5歳の子どもでの症例がもっと予測されたはずである」と、非論理的な主張をしている。 このような非論理的な主張は、少し形式は違うが、事故後の異なる期間でのベラルーシと福島との比較として、『The Lancet Diabetes and Endocrinology』掲載のコレスポンデンス "Radiation and risk of thyroid cancer: Fukushima and Chernobyl"(邦題「放射線と甲状腺がんリスク:福島とチェルノブイリ」)でも繰り広げられている[23]。このコレスポンデンスの内容は、2016年9月14日の第24回県民健康調査検討委員会で資料8として高村昇委員により発表された。この発表に対する他の委員らの反応は、「5年以降に、そして10年目まで増えている。今まだ5年半だが、これからが問題で、しっかりした検査を続けていかなければいけない」(清水一雄委員)、「異なる年数や期間での比較はしてはいけない」(清水修二委員)、「これからその影響をしっかり見ていかないと最終的な判断ができないということは明らかなので、少なくともこれから5年、10年の検査は必要」(春日文子委員)というものだった。(詳細は、おしどりマコ氏の書き起こし記事を参照のこと)
参考文献 [1] Hogan AR, Zhuge Y, Perez EA, Koniaris LG, Lew JI, Sola JE. Pediatric thyroid carcinoma: incidence and outcomes in 1753 patients. J Surg Res. 2009 Sep;156(1):167-72. doi: 10.1016/j.jss.2009.03.098. [2] Harach HR, Williams ED. Childhood thyroid cancer in England and Wales. British Journal of Cancer. 1995;72(3):777-783. [3] Williams ED, Abrosimov A, Bogdanova T, et al. Morphologic Characteristics of Chernobyl-Related Childhood Papillary Thyroid Carcinomas Are Independent of Radiation Exposure but Vary with Iodine Intake. Thyroid. 2008;18(8):847-852. doi:10.1089/thy.2008.0039. [4] Robbins K, Clayman G, Levine PA, et al. Neck Dissection Classification Update: Revisions Proposed by the American Head and Neck Society and the American Academy of Otolaryngology–Head and Neck Surgery. Arch Otolaryngol Head Neck Surg. 2002;128(7):751-758. doi:10.1001/archotol.128.7.751. [5] Ory C, Ugolin N, Schlumberger M, Hofman P, Chevillard S. Discriminating Gene Expression Signature of Radiation-Induced Thyroid Tumors after Either External Exposure or Internal Contamination. Genes. 2012;3(1):19-34. doi:10.3390/genes3010019.
[6] Tronko MD, Bogdanova TI, Komissarenko IV, Epstein OV, Oliynyk V, Kovalenko A, Likhtarev IA, Kairo I, Peters SB, and LiVolsi VA. Thyroid carcinoma in children and adolescents in Ukraine after the Chernobyl nuclear accident. Cancer. 1999;86:149–156. doi:10.1002/(SICI)1097-0142(19990701)86:1<149::AID-CNCR21>3.0.CO;2-A.
[7] LiVolsi, VA, et al. The Chernobyl Thyroid Cancer Experience: Pathology. Clinical Oncology. 23(4):261-267. [8] Williams ED, Abrosimov A, Bogdanova T, et al. Morphologic Characteristics of Chernobyl-Related Childhood Papillary Thyroid Carcinomas Are Independent of Radiation Exposure but Vary with Iodine Intake. Thyroid. 2008;18(8):847-852. doi:10.1089/thy.2008.0039. [9] Nikiforov YE, Seethala RR, Tallini G, et al. Nomenclature Revision for Encapsulated Follicular Variant of Papillary Thyroid Carcinoma: A Paradigm Shift to Reduce Overtreatment of Indolent Tumors. JAMA Oncol. 2016;2(8):1023-1029. doi:10.1001/jamaoncol.2016.0386.
[10] Ito Y. and Miyauchi A. Thyroidectomy and Lymph Node Dissection in Papillary Thyroid Carcinoma. Journal of Thyroid Research. 2011; Article ID 634170, 6 pages. doi:10.4061/2011/634170.
[11] Mitsutake N, Fukushima T, Matsuse M, et al. BRAFV600E
mutation is highly prevalent in thyroid carcinomas in the young
population in Fukushima: a different oncogenic profile from Chernobyl. Scientific Reports. 2015;5:16976. doi:10.1038/srep16976. [12] Namba H, Nakashima M, Hayashi T, Hayashida N, Maeda S, Rogounovitch TI, Ohtsuru A, Saenko VA, Kanematsu T, and Yamashita S. Clinical Implication of Hot Spot BRAF Mutation, V599E, in Papillary Thyroid Cancers. The Journal of Clinical Endocrinology & Metabolism. 2003;88(9):4393-4397. [13] Nasirden A, Saito T, Fukumura Y, et al. Virchows Arch (2016). doi:10.1007/s00428-016-2027-5. [14] Ito Y, Yoshida H, Maruo R, et al. BRAF Mutation in Papillary Thyroid Carcinoma in a Japanese Population: Its Lack of Correlation with High-Risk Clinicopathological Features and Disease-Free Survival of Patients. Endocrine Journal. 2009;5(1):89-97. [15] Fukushima T, Suzuki S, Mashiko M, et al. BRAF mutations in papillary carcinomas of the thyroid. Oncogene. 2003;22:6455–6457. doi:10.1038/sj.onc.1206739. [16] Vuong HG, Kondo T, Oishi N, et al. Genetic alterations of differentiated thyroid carcinoma in iodine‐rich and iodine‐deficient countries. Cancer Medicine. 2016;5(8):1883-1889. doi:10.1002/cam4.781. [17] Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H, and Fagin JA. Distinct Pattern of ret Oncogene Rearrangements in Morphological Variants of Radiation-induced and Sporadic Thyroid Papillary Carcinomas in Children. Cancer Res. May 1997;57(9):1690-1694. [18] Leeman-Neill RJ, Brenner AV, Little MP, Bogdanova TI, Hatch M, Zurnadzy LY, Mabuchi K, Tronko MD, and Nikiforov YE. RET/PTC and PAX8/PPARγ chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with iodine-131 radiation dose and other characteristics. Cancer. 2013;119:1792–1799. doi:10.1002/cncr.27893. [19] Givens DJ, Buchmann LO, Agarwal AM, Grimmer JF, and Hunt JP. BRAF V600E does not predict aggressive features of pediatric papillary thyroid carcinoma. The Laryngoscope. 2014;124:E389–E393. doi: 10.1002/lary.24668. [20] Henke LE, Perkins SM, Pfeifer JD, Ma C, Chen Y, DeWees T, and Grigsby PW. BRAF V600E mutational status in pediatric thyroid cancer. Pediatr Blood Cancer. 2014;61:1168–1172. doi:10.1002/pbc.24935. [21] Guan H, Ji M, Bao R, et al. Association of High Iodine Intake with the T1799A BRAF Mutation in Papillary Thyroid Cancer. The Journal of Clinical Endocrinology & Metabolism. 2009;94(5):1612-1617. doi:10.1210/jc.2008-2390. [22] International Advisory Committee. The International Chernobyl Project. Assessment of radiological consequences and evaluation of protective measures. Technical Report. Vienna: International Atomic Energy Agency; 1991. [23] Takamura N, Orita M, Saenko V, Yamashita S, Nagataki S, and Demidchik Y. Radiation and risk of thyroid cancer: Fukushima and Chernobyl. The Lancet Diabetes & Endocrinology. 2016;4(8):647. doi:10.1016/S2213-8587(16)30112-7.
The Lancet: Diabetes and Endocrinology (「ランセット:糖尿病と内分泌学」)2016年8月号に、長崎大学(高村昇、折田真紀子、ウラジミール・サエンコ、山下俊一、長瀧重信)とベラルーシ(ユーリ・デミチク)の共同研究が、コレスポンデンスとして掲載された。これは、2016年8月4日に福島民報に掲載された記事で言及されている論文だと思われる。以下は非公式和訳である。
チェルノブイリ事故後の甲状腺がん発症率が「事故当時ゼロ~5歳だった世代で事故4年後以降に顕著に増加」したことを、「東京電力福島第一原発事故の発生当時ゼロ~5歳の世代では先行検査の段階では発症が確認されていない」ことと比較するのは、事故後の異なる時期(チェルノブイリの事故4年後以降 vs. 福島の事故後最初の4年)での比較であり、意味がない。それにも関わらず、福島での甲状腺がんに関連する論文などでは、一貫してその比較がなされている。